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Abstract—This paper suggests the concept of shaping the
pulsewidth-modulated (PWM) converter admittance. The ana-
lytic admittance matrix equation, which is derived from the small
signal model of a PWM converter, is formulized. Based on the
damping coefficient and the natural frequencies of phase-locked
loop and dc voltage loop, the variations in admittance frequency
responses are discussed. In addition, the frequency response can
be adjusted through pole placement using the gain of the current
controller. The controller gain for a stable operation is designed
by detailed understanding of the frequency response shape.
Furthermore, to stabilize the local electric power systems (EPSs)
that invoke instability through the interaction between constant
power load PWM converters, the admittance shaping loop is
utilized for the distributed generator PWM converters. Through
computer simulation and hardware experiments, the proposed
shaping guidance can effectively stabilize local EPS.

Index Terms— Admittance matrix, admittance shaping loop,
grid voltage stability.

I. INTRODUCTION

ECENTLY, there has been growing concern for the
stability of local electric power systems (EPSs) on a
distribution line as distributed generators (DGs) or local loads
based on pulsewidth-modulated (PWM) converters have been
penetrated. The constant power load (CPL) with PWM con-
verter could be a factor for the instability due to the negative
incremental input impedance [1], [2]. Although each CPL
with converter has been designed to guarantee a stable EPS
operation where CPL is connected, the parallel operation of
such CPLs makes the local EPS grid voltage unstable [3].
To maintain the transformer capacity and transmis-
sion/distribution line in the present, the installation of
PWM converters-based DGs is getting popular. Since these
DGs could be coupled to the load in distribution line closely,
the parallel operations of converters with their loads are
becoming increasingly common. The parallel operation of
PWM converters tied to a distribution line could invoke
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unexpected interference among converters as the local EPS
distribution line has a different source impedance than a
strong grid, which looks like an ideal voltage source [3], [4].
Nowadays, with the increase in DGs, the distribution line
stability of local EPS equipped with multiple converters is
more important.

The impedance-based analysis can be a practical method
used to analyze the local EPS stability, and has been success-
fully used in dc systems [2]. The electrical power system can
be characterized by input-output relationships, like impedance
or admittance [5]. The addition of an extra unit to the local
EPS can be treated as a simple additional impedance or
admittance to the existing system. The admittance matrix is
analytically obtained by a small signal modeling with an
average model concept [2], [6], [7]. The admittance shape
had been studied in [6], but the integral gain of the con-
troller was not considered even though it could cause severe
instability problems. Much research has concentrated on the
admittance variation according to the controller gains, but
the authors believe that an intuitive guide for designing the
frequency response of the admittance matrix is still missing.
The instability phenomena of paralleled CPLs were studied
in [3], but there is insufficient literature that considers the
stabilizing effect through installing the DG, such as the Photo-
voltaic (PV) generation unit, battery energy storage system, or
active damper circuit to distribution line of local EPS.

In this paper, the admittance matrix model is derived con-
sidering the practical implementation of the PWM converter.
Although the proposed idea from this paper can be extended
to general local EPS equipped with multiple PMW convert-
ers, the scope of this paper is limited to PWM converters
interfacing the CPL or PV generators that operate at unity
power factor to facilitate the understanding of the admittance
shaping concept. The variations of frequency response in the
admittance matrix are interpreted by control design factors,
such as control bandwidth and damping coefficient. As the
phase-locked loop (PLL) or dc-link voltage controller would
be designed to have second-order low-pass filter character-
istics, the natural frequency and damping coefficient of the
controllers can intuitively guide the frequency response of
admittance. In conjunction with this understanding, the con-
troller design guide is proposed. The unstable load system
reported in [3] could be stabilized by adjusting the controller
gain according to the proposed design guidance. In addition,
an impedance shaping technique for the PV generation unit or
active damper is proposed to effectively stabilize the voltage
at the point of common coupling (PCC), even though the PV
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Fig. 1. (a) Small signal representation of an inverter-grid system.
(b) Equivalent feedback system.

generation power capability is much smaller than the total load
of local EPS.

II. STABILITY-ORIENTED ADMITTANCE SHAPING
WITH TUNING CONTROLLER

A. Impedance-Based Analysis Using Generalized
Nyquist Stability Criterion

In this section, the method to analyze system stability is
reviewed. To analyze the grid-connected converter stability,
an impedance (or admittance)-based analysis can be utilized.
The subsystem representing source can be modeled as the
Thevenin equivalent circuit, and the subsystem representing
the CPL or PV generating unit can be modeled as the Norton
equivalent circuit as shown in Fig. 1(a) [8]. The whole system
can be represented alternatively as a closed-loop feedback
system as shown in Fig. 1(b). The feedback system loop can
be analyzed instead of studying the local EPS stability.

In d-q impedance analysis, the system becomes a multi-
input multi-output (MIMO). To analyze the MIMO system
stability, the roots of the closed-loop characteristic equation
in the following could be studied:

det(I + Z,Y,) = 0. (1)

Alternatively, the generalized Nyquist stability criterion
represents stability by a graphical curve on a complex
plane [9], [10]. According to the generalized Nyquist stability
criterion, the feedback system is stable if and only if the
Nyquist curve of (1) does not encircle the origin.

To obtain the admittance matrix of PWM converters, the
small signal models have been quantified by an averaged
model [2], [3], [6], [11], [12]. In this paper, the output voltage
of the converter was directly used to derive the averaged
model, while the power equation was used to model the dc
system as in [6] and [11]. If the carrier wave for PWM
proportionally adjusted according to dc-link voltage, the output
voltage of the PWM converter can be accurately synthesized
regardless of dc-link voltage variation. In order to consider the
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Fig. 2. Block diagram of control system for CPL or PV generation unit.

PLL dynamics, the system and converter coordinates can be
separated [6], [13], [14]. The delay due to PWM and digital
control can also be considered. However, this paper assumes
that this delay can be effectively compensated for with a proper
algorithm such as the one proposed in [15], and hence this
delay has been neglected.

B. Analysis of Small Signal Model According
to Controller Gains

The block diagram of a controlled system can be represented
in Fig. 2. The dc-link voltage control is constructed while
considering the CPL or PV generation unit. For a CPL and DG
based on the PV panel, the converter has been assumed to
control the power factor as unity. Under this assumption,
the output admittances could be diagonalized as in [10] and
become (2) and (3)

~1
Y. = [g“c“ —aee) O } @
0 glcc
—1
8rec(l — ace) 0 i|
Y, = Icc 3
’ |: 0 (glcc"‘glcl)_1 @
1
grec = ~[Ls* + (Ry +kpe)s + kic] @
S
kpps + ki
— T 16 V€ )24 p 5
dce ( cleq + Cq)S2+E§kppS+E2kip ( )
8lcl = T.(1 +aoir)7la0i (6)
1 3
aoir = — =T, T, )
gpc 2 “
1 3
aoi = g.TCE(VCeq — 15, T)T, (@)
2
gnc = CacVdes + ——. )
Rac

In the aforementioned equations, Ty, T, and T, represent
the transfer functions of the proportional-integral (PI) con-
troller of PLL, ac current regulator, and dc voltage regulator,
respectively. The proportional gain of each controller is defined
as kpp, kpe, and kp,. The integral gain of each controller is
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Fig. 4. gg-admittance according to the control parameter of the current regulator.

defined as k;p, kic, and k;,. Ifq and Vceq stand for the oper-
ating point of active current and active voltage, respectively.
E7 represents the peak magnitude of the grid phase voltage.
Ly and Ry stand for the inductance and resistance of the
filter. Cgc and Ryc stand for the dc link capacitance and dc
load resistance. Finally, the complex variable s is the Laplace
transform variable.

The current controller affects the overall functions
in (2) and (3). The PLL gains affect ac.. The feedback loop
from the grid voltage to the d-axis current reference, such as
anti-islanding functionality, is not constructed. In this case,
the PLL affects only the dd-admittance. The gains of the dc
voltage controller affect g;.;, as seen in (3), and shape the
gq-admittance.

If only the current control loop is considered, the output
admittance becomes gfclc. This can be asymptotically repre-

sented as
s

Lf52 + (Rf +kpc)s + kic
N

-1 _
8rcc =

(10)

Ls(s+ a)f%)(s + Weeppe)

The gains of the current controller are designed as
kpe = ppcL pooce and kic = pjc R pee. If both ppe and p;. are
set to 1, the transfer function of the current control becomes
the first-order low-pass filter with bandwidth w... In (10),
o represents the pole set by the filter parameter. From (10),
kic contributes to the migration of the filter pole, wy, and
kpc contributes to the migration of both ac current dynamics
poles. The bandwidth of the current control can be determined
by the switching frequency of the converter. The bandwidth
is set below 1/6 the switching frequency in a practical
sense [16].

Fig. 3 shows the Bode plot of the admittance in (10), which
determines the dynamics of output admittance, except for
gg-admittance in (2), without PLL dynamics. The results
confirm the description reported in the previous paragraph.
Fig. 4 shows the gg-admittance with the dc voltage controller.
Due to the dc voltage control effect, the phase response is
alleviated around the pole by the filter parameters.

In [3] and [8], the admittance shape was analyzed according
to the proportional and integral gains of the PLL and dc volt-
age regulator. This made the interpretation of the admittance
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Fig. 6. gg-admittance of the converter according to the control parameters of the dc-link voltage regulator.

frequency response difficult. However, the PI controller gains
of the PLL and dc voltage regulator could be designed based
on the second-order filter characteristics. Furthermore, the
variation of the gains would be considered equivalent to the
variation of the natural frequency and the damping coefficient.
The natural frequency determines the location of the pole,
while the damping coefficient determines the magnitude of the
peak at the natural frequency. The damping coefficient relates
to phase variation, so an underdamped design varies the phase
dramatically. If gains are overdamped, the interval of phase
variation is enlarged.

The input-output transfer function of PLL and dc voltage
regulation with PI controller can be designed as [17]

‘9_h B E; (kpps + kip) _ 2CPCO”PS + wrzlp (11)
0 524+ E¢kpps + Egkip 220 pwnps + w:%p
@ . Cv_lkpvs + Cv_lkiv Q’(vwnvs + C()%v (12)

Vie 824+ C ks + G ki 82 H2000ms + 02,

where Cy, = 2Cqc Vaco/ 3E§. Vaco stands for the operating point
of dc voltage. w,, and wy, stand for the natural frequencies
of PLL and dc voltage regulator, respectively. ¢, and ¢, stand
for the damping coefficient of each regulator.

The natural frequency is associated with I gain. The damp-
ing coefficient is proportional to the P gain and inversely
proportional to the square root of I gain. Since (11) is included
in (5), the variation of (11) according to @y, or ¢, can directly
affect the admittance shape. On the other hand, the relationship
between (6) and (12) is not clear. However, the admittance
matrix (3) can be shaped by properly designing w,, and ¢, as
in (12).

Figs. 5 and 6 show the admittance variation according to the
natural frequencies and damping coefficients for a CPL. For
comparison, the results show the variation of I gain. Because
the variation of P gain is the same as that of the damping
coefficient, the related results are not displayed. In Fig. 5,
as the natural frequency of PLL increases, the location of
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the phase change is moving upward. The PLL affects only
dd-admittance, which is expected by (2) and (3). As the
damping coefficient becomes smaller, the magnitude valley
is deeper and the phase response slope is steeper. However,
if I gain is adjusted, both the natural frequency and damping
coefficient are changed so that the design guide cannot be
obtained. In Fig. 5, the control parameters of dc voltage
regulation show similar dynamics and the dc voltage regulator
affects gg-admittance as described by (3). Although g;.; has
complicated interactions with other controllers, the phase and
magnitude responses are forecasted by the natural frequency
and damping coefficient of the voltage regulator.

From [18]-[21], the damping coefficient of PLL severely
affects the stability of the system under weak grid conditions.
Compared with critical damping, an extremely underdamped
or overdamped design can invoke instability. The damping
coefficient of PLL is set at the recommended 0.707, which
corresponds to the critical damping.

To alleviate magnitude peaking for the dc voltage regulator,
the damping coefficient is to be set between 0.707 and 3.
If the damping coefficient is set over 3, the slope of the
phase response in the frequency domain becomes too small.
On the other hand, the phase response dramatically varies as
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Results of time-domain simulation for parallel CPL. (a) Larger damping coefficient. (b) Proposed damping coefficient.
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Fig. 9.

the damping coefficient decreases. However, the magnitude
in the frequency domain has large peak value. The natural
frequency should be carefully designed while considering
physical parameters, such as sampling frequency, the amount
of disturbance, and so on. For both PLL and dc voltage
controllers, the natural frequency would be set below one-third
of grid frequency.

C. Instability Caused by Interaction Between Converters

As reported in [3], the parallel operation of converters
connected to CPL, originally designed to guarantee the stable
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Fig. 10. Results of time-domain simulation for parallel CPLs and a PV generator. (a) 100% power generation. (b) 10% power generation.

operation of the single converter itself, can induce instability
due to the interaction of converters. Fig. 7(a) shows the parallel
operation system configuration of CPLs.

Although each converter is designed to be stable, the large
damping coefficient can lead to instability due to the insuf-
ficient phase margin at midfrequency ranges. If the proposed
damping coefficient is adopted, the parallel operation becomes
stable under the same grid impedance. Fig. 7(b) shows the
generalized Nyquist curves. For the single CPL and paralleled
CPLs with the proposed gain (¢, = 3), the Nyquist curves
do not encircle the origin. However, for the paralleled CPLs
with a larger damping coefficient (¢, = 8), the Nyquist curve
encircles the origin and implies instability in the entire system.
Fig. 8 shows the results of the time-domain simulation. The
parameters for the simulation are listed in Table I.

III. STABILITY-ORIENTED ADMITTANCE SHAPING
WITH ACTIVE DAMPING

If the controller of the load cannot adjust, the additional
generation unit can alleviate the possibility of instability.
As shown in Fig. 9, one PV generation unit is assumed
to have the same power capacity and control scheme with
load installed to the local EPS distribution line. The only
difference between the load and PV unit is the direction of
power flow. Because the Maximum Power Point Tracking
(MPPT) algorithm works in longer periods, the MPPT is
neglected in small signal modeling. The g-component of the
PV converter admittance has the same magnitude and opposite
phase compared with admittance of a load converter at the
midfrequency range. As a result, the admittance of a load
converter can be canceled out by one PV converter with
the same power capacity. As depicted in Fig. 10(a), with

TABLE I
PARAMETERS IN SIMULATION

Rated power 1 MW (1 p.u.)
Grid voltage (line-to-line) 380 Vs (1 p.u)
(e requenes o) 00z
Grid impedance 0.05 p.u.
Output filter inductance 0.15p.u.
dc voltage 690V
dc-link capacitance 36.7 mF
Onp 27 x10 rad/s
<p 1
Wee 10 w,
Wny 1/3 w,

the additional PV generation unit, the system with the same
control parameter in Fig. 8(a) can be stabilized. However, if
the generation power of the PV unit is reduced due to the
shading effect or solar irradiation variation, the PV converter
cannot stabilize the system [Fig. 10(b)].
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To provide a stabilizing effect on an unstable operation even
under irradiation reduction, the admittance shaping loop is
constructed according to the PV converter. To directly shape
the PV converter admittance, the feedback loop from grid
voltage to converter current could be designed. Fig. 11(a)
shows the control scheme with an impedance shaping loop.
To shape the frequency response at the midfrequency range,
various transfer functions can be applied. For example, the
bandpass filter in (13) can be utilized similar to the active
damping in [9] that relieves subsynchronous interactions.
To realize the bandpass filter, the second-order generalized
integrator (SOGI) structure in Fig. 11(b) is adopted. If the
frequency region of instability is changed, various types of
shaping loops can be adopted

0
20ppns

§2 4+ 20 wnns + wih

H(s) = (13)

Ky

If the feedback loop with (13) is constructed, the output
admittances are changed to (14). As shown in the following,
the gg-admittance can be adjusted directly by the feedback
of the grid voltage to converter current through the bandpass

0

filter:
Y =|:g[_clc(1_ace) i|
? (glcc+glcl)7l(I_Tc(l‘i‘aoir)ilH(s)) i
(14)

0

Although the generating power of PV is reduced to 10%, the
system can be stabilized with the admittance shaping loop. The
generalized Nyquist curve in Fig. 12(a) shows that the stability
margin has been increased by active damping, and the system
becomes stable. Fig. 12(b) shows the gg-impedance variation
by loop shaping. With loop shaping, as the grid dd-impedances
decreases, the magnitude overlapping has disappeared. This
can also be verified by time-domain simulations as shown
in Fig. 13.



KIM AND SUL: SHAPING OF PWM CONVERTER ADMITTANCE FOR STABILIZING LOCAL EPSs

1000

e tavavatetavatataVavatataYare
-1000 . . ‘ . . . ‘ . . i

1. 123 124 125 1268 127 128 129 1.3
500

= ORISR,
,EDD 1 1 1 1 1 1 L 1 1 1

12 121 122 123 124 125 126 127 128 129 13
750 PV dc-link voltage
700

650
600 . . ‘ . . . ‘ . . .
12121 122 123 124 125 126 127 128 129 13
5000 CPL 1 current
T o PIIRIISIIRSISISISISISI SIS
-5000 1 1 L 1 1 1 L 1 1 ]
12 121 122 123 124 125 126 127 128 129 13
750 CPL 1 dc-link voltage
5700
650
600 . . s . . . s . . |
12121 122 123 124 125 126 127 128 129 13
5000 CPL 2 current
T 0PI I ISISIRIIIITIK
-5000 ' L L L L L L ' ' '
12 121 122 123 124 125 126 127 128 129 13
750 CPL 2 dc-link voltage
700
650
600
12 121 122 123 124 125 126 127 128 129 13
time [s]
Fig. 13. Results of time-domain simulation for parallel CPLs and a

PV generator (10% power generation, active damping).

TABLE 11
PARAMETERS IN EXPERIMENT

Rated power 3 kW

Grid voltage (line-to-line) 220 Vims
Grid frequency 60 Hz
Grid inductance 4 mH

Output filter inductance 1.9 mH
dc voltage 350V
dc-link capacitance 2 mF
Wee 10 w,,

Onp 27w x 10 rad/s
{p 1

IV. EXPERIMENTAL RESULTS

Hardware experiments were carried out to verify the
proposed idea and discussion. The circuit specified in
Figs. 7 and 9 is constructed in small scale. The parameters
for the experimental setup are listed in Table II.

As the CPLs with the proposed gain are operated in par-
allel, the system can be operated stably [Fig. 14(a) and (c)].
However, as the damping coefficient increases, the grid volt-
age contains oscillations [Fig. 14(b) and (d)]. Due to the
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Fig. 14.  Experimental results with different control parameters—parallel
CPLs.

insufficient phase margin at the midfrequency range from
the large damping coefficient, the midfrequency oscillation
(about 180 Hz) is observed. High-frequency oscillations
(about 1 kHz) from unpredictable parasitic components in the
system are also seen.

Fig. 15 shows the results with the admittance shaping loop
where the generation power by PV unit is assumed to be
zero. In the worst case, the irradiation on the PV panel could
be entirely shaded so that the generating power of the PV
unit becomes zero. This worst case scenario was assumed for
the experiment. The active damping can stabilize the system
operation even in this worst case. The active damping is
designed based on previous result observations. The midfre-
quency oscillation can be suppressed by the bandpass filter,
whose center frequency is set to 180 Hz in impedance shaping
loop. High-frequency oscillation due to parasitic components
can also be suppressed by an additional paralleled bandpass
filter of 1 kHz. Compared with the results in Fig. 14(b) and (d),
the PV unit significantly reduces the oscillations of the grid
voltage although the average power supply of the PV unit
is zero. Even though the current control bandwidth is set below
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Fig. 15. Experimental results with different control parameters—admittance

shaping by PV generation unit without power generation.

the oscillation frequency 1 kHz, the grid voltage distortion
could be relieved conspicuously by the admittance shaping
loop.

V. CONCLUSION

This paper proposes the design guidance to shape the admit-
tance matrix of PWM converter for CPL or DG. To obtain
the admittance matrix, the practical compensation algorithms
of the PWM converter to synthesize proper output voltage
are considered. Assuming the unity power factor operation,
the diagonal admittance matrix could be obtained and the
analytic equations derived. The design guide for the shaping
frequency response of the admittance matrix is based on
the damping coefficient and the natural frequency of the
PLL and dc voltage controller. Both parameters can provide
intuitive information to shape the frequency response magni-
tude or phase. The changing gains of the current controller
can be interpreted as pole placement. In conjunction with
this understanding, the controller design guidance has been
proposed.

The unstable load system proposed in another paper could
be stabilized by adjusting the controller gain to the values
according to the guides in this paper. Stabilization through the
PV generation unit with paralleled CPL has been discussed
for future local EPS construction. The admittance shaping
loop on the PWM converter of the PV generation unit is
also proposed where the system can be stabilized through
a proposed feedback loop, even with low power generation.
In experimental tests, the admittance shaping loop can effec-
tively stabilize the voltage at the PCC even without the power
generation of the PV system.
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