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Abstract—Grid synchronization technique is essential for grid-
connected power converters. Phase locked loop (PLL) has been 
exploited as an implementation technique. However, additional 
efforts are required for PLL to deal with severely distorted grid 
voltages. In this paper, an observer is proposed to enhance the 
performance of PLL. A state equation is formulated to extract 
positive-sequence voltage from the distorted grid voltage and is 
utilized to construct the observer. Guidelines are suggested to set 
the gains of the observer along with its internal transfer 
functions. The PLL combined with the proposed observer has 
been tested in simulations and experiments in contrast to dual 
second order generalized integrator frequency locked loop 
(DSOGI-FLL). The results have validated that the proposed 
method reveals better phase-tracking performance for grid 
synchronization. 

I. INTRODUCTION 

Electricity is delivered from suppliers to consumers via an 
electrical grid. The grid voltage is expected to be sinusoidal, 
whose frequency is fundamentally 50 or 60 Hz. This normal 
voltage is called as positive-sequence voltage. In particular, 
electrical power is mainly transferred by modulating the ac 
current corresponding to the positive-sequence voltage. It is 
useful to separate this ‘positive-sequence fundamental power’ 
from the rest of ‘apparent power’ [1]. 

The phase angle of grid voltage should be detected to 
elaborately modulate active and reactive powers when a grid-
connected converter participates in power delivery. For this 
purpose, the method based on phase locked loop in the 
synchronous reference frame (SRF-PLL) has been widely 
used [2], [3]. However, because the grid voltage is usually 
polluted by unexpected distortions such as harmonics, 
unbalances, and glitches, the detection of its phase angle may 
not be easy with the simple PLL method. 

Accordingly, a multitude of attempts have been made to 
detect the phase angle of positive-sequence voltage even under 
polluted grid conditions [4]-[6]. Namely, it is required to filter 
out any distortions except positive-sequence component for 
the accurate detection. Because each detection method has its 
own advantages and disadvantages, careful consideration is 
needed to select an appropriate method for grid 
synchronization. A proposed method in this paper is explicitly 

detailed in its construction and implementation. In addition, 
the effect of the proposed method is compared with 
conventional methods to obviously present its advantages. 

In this paper, an observer is proposed as a preprocessing 
part of PLL to enhance the required performances for polluted 
grid conditions. In section II, it is described how the observer 
can obtain positive-sequence voltage without distortions. After 
the observer gains are specifically determined, the attachment 
of the observer to a PLL is detailed in section III. The 
proposed method is then assessed via simulation and 
experimental results under grid fault situations in section IV. 
Finally, the concluding remarks are noted in section V. 

II.  EXTRACTION OF POSITIVE-SEQUENCE VOLTAGES 

A. Definitions of Symmetrical Components 
In general, three-phase voltage can be decomposed into the 

symmetrical components: positive-, negative-, and zero-
sequence voltages [7]. Initially, zero-sequence voltage cannot 
be measured in a three-wire three-phase grid, where only line-
to-line voltages are accessible. In addition, negative-sequence 
voltage arises mainly when the grid is under abnormal 
operating conditions such as phase-to-ground faults and 
unbalanced loading conditions. In SRF-PLL, it is hard to filter 
out the negative-sequence voltage in the synchronous 
reference frame even though the bandwidth of PLL is reduced. 
[2], [4]. This negative-sequence voltage should be intensively 
considered for grid synchronization. Initially, positive 
sequence voltage can be defined as 

a+ + p

b+ + p

c+ + p

v V sinθ

v V sin(θ 120 )

v V sin(θ 120 )

 = −


= − − °
 = − + °

                                             (1) 

where both the subscripts ‘+’ and ‘p’ refer to positive-
sequence, and θp is the phase angle of positive-sequence 
voltage. 

As per the definition of (1), the positive-sequence voltage 
only exists in the quadrature axis of the synchronous reference 
frame. This definition has been adopted to maintain the 
coherence between grid and ac-motor applications. By using 
the same phase angle, negative sequence voltage can then be 
generalized into 
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Figure 1. Positive- and negative-sequence votlages. 

a p

b p

c p

v V sin(θ )

v V sin(θ 120 )

v V sin(θ 120 )

n

n

n

φ
φ
φ

− −

− −

− −

 = − +


= − + + °
 = − + − °

                                      (2) 

where the subscript ‘−’ represents negative-sequence, and φn is 
the phase difference of negative-sequence voltage to positive-
sequence voltage. 

For example, each voltage in (1) and (2) can be depicted in 
terms of the phase angle as shown in Fig. 1. In the figure, V+ 
in (1) was set to 179.6 V, and V- in (2) was 30 % of V+. In 
addition, φn in (2) was set to 30 °. 

B. An Observer for Estimating Positive-Sequence Voltage 
For the observer design, the state equation on grid voltage 

must be established first. This state equation explains the 
relationship between states and their derivatives. That is, grid 
voltage should be discussed with respect to its time-variation. 
In particular, grid voltage can be considered in the 
synchronous reference frame by the Park’s transformation: 

a
p p pd

b
q p p p

c

vˆ ˆ ˆcosθ cos(θ 120 ) cos(θ 120 )v 2
v

v ˆ ˆ ˆ3 sinθ sin(θ 120 ) sin(θ 120 ) v

  − ° + °    =    − − − ° − + °      

        (3) 

where the hat ‘^’ refers to estimated value hereafter. 

For each phase, the sum of (1) and (2) can be inserted into 
the left-side of (3). Zero-sequence voltage is not considered 
because it is naturally erased in the process of (3). The d-q 
voltages can also be decomposed into positive- and negative-
sequence components in the synchronous reference frame: 

p dd d+ d + d

q q+ q + d p d

ˆV sin (2θ θ )v v v V sinθ

v v v ˆV cosθ V cos(2θ θ )

n

n

φ

φ
−−

− −

 − + +−         = + = +         − + +        
  (4) 

where d p p
ˆθ θ θ= − .                               ( 5 ) 

If dθd/dt and dφn/dt are negligible under the assumption 
of slow variation of the estimation error and the phase 
difference, the derivative of (4) can be approximated by the 
chain rule into 

p d nd d
p

q q p d n

ˆV cos(2θ θ )v v ˆ2 θ
v v ˆV sin (2θ θ )

d d d
dt dt dt

φ

φ
−−

− −

 − + +   
 ≈ = ⋅   
 + +     

.              (6) 

Each negative-sequence component in (4) is repeated in 
the other axis of (6). Equation (6) is then rearranged into 

d q q q+
p p

q d d+ d

v v v vˆ ˆ2 θ 2ω
v v v v

d d
dt dt

−

−

−     
≈ ⋅ =     − −    

                  (7) 

where ω symbolizes frequency. 

In (7), the derivatives of d-q voltages are explained with 
respect to themselves and their positive-sequence components. 
In addition, because it has been assumed to derive (7) that 
dθd/dt is small enough, the time-variations of positive-
sequence components in (4) are considered to be negligible. 
Then, the state equation of the grid voltage can be derived as 

p p

p p
s m s

ˆ ˆ0 2ω 0 2ω

ˆ ˆ2ω 0 2ω 0
V V A V

0 0 0 0

0 0 0 0

s
d
dt

− 
 − = = 
 
  

                    (8-a) 

d
o s m s

q

v 1 0 0 0
V V C V

v 0 1 0 0

   
= = =   

  
                     (8-b) 

T

s d q d+ q+V v v v v =                                           (8-c) 

where the subscripts ‘s’ and ‘o’ refer to state and output, 
respectively. 

A Luenburger observer can be designed as (9) to estimate 
the internal states, vd+ and vq+, because the system is 
observable with Am and Cm in (8) [9]: 

s m s m o m s
ˆ ˆ ˆV A V L [V C V ]

d
dt

= + ⋅ −                                          (9-a) 

T

1 3 1 3
m

2 4 2 4

p p q q
L

p p q q

 
=  
 

                                (9-b) 

T

s d q d+ q+
ˆ ˆ ˆ ˆ ˆV v v v v =                                   (9-c) 

where variables in Lm are observer gains. 

C. Gain Settings for the Observer 
The observer gains of Lm in (9) must be specified to 

implement the observer. It follows which factors are 
considered to set the observer gains. Initially, the overall 
operation of the observer can be explained with its internal 
transfer functions in the Laplace domain. The state equation in 
(9) can be transformed into (10) when the derivative operator 
is replaced with the Laplace operator: 

s m s m o m s
ˆ ˆ ˆs V A V L [V C V ]⋅ = + ⋅ − .                (10) 

Equation (10) can be rearranged in terms of Vo: 
1

s m m m m m oV̂ [s I A L C ] L V−= ⋅ − + ⋅                                       (11) 

where Im represents the identity matrix. 

Hence, the estimated states in (9-c) can be expressed with 
respect to the measurable states in (8-b): 
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d t t d t t q

q t t d t t q

d+ t t d t t q

q+ t t d t t q

v̂  A /P v E /P v

v̂  B /P v F /P v

v̂ C /P v G /P v

v̂ D /P v H /P v

= ⋅ + ⋅
 = ⋅ + ⋅
 = ⋅ + ⋅
 = ⋅ + ⋅

              (12) 

where all transfer functions in (12) are detailed with 
3 2

t 1 p 3 3 1 4 2 3

2
p 1 2 2 1 3 4 4 3 p 1 p 1 4 2 3

ˆA p s {2ω (p q ) p p p p }s

ˆ ˆ ˆ2ω (p q p q p q p q 2ω q )s 4ω (q q q q )

= + − + −

+ − + − + + −
(13-a) 

3 2 2
t 3 p 1 1 p 3ˆ ˆB p s 2ω (q p )s 4ω q s= + − +              (13-b) 

3 2
t 1 4 1 3 2

2
p 1 2 2 1 p 1 p 1 4 2 3

C q s (p q p q )s

ˆ ˆ ˆ+2ω (p q p q 2ω q )s 4ω (q q q q )

= + −

− + + −
      (13-c) 

3 2
t 3 4 3 3 4

p 3 2 2 4 1 1 p 3

D q s (p q p q )s

ˆ ˆ2ω {q (q p ) q (p q ) 2ω q }s

= + −
+ − + − +

      (13-d) 

3 2 2
t 2 p 4 4 p 2

ˆ ˆE p s 2ω (p q )s 4ω q s= + − +        (13-e) 

3 2
t 4 p 2 2 1 4 2 3

2
p 1 2 2 1 3 4 4 3 p 4 p 1 4 2 3

ˆF p s {2ω (q p ) p p p p }s

ˆ ˆ ˆ2ω (p q p q p q p q 2ω q )s 4ω (q q q q )

= + − + −

+ − + − + + −
(13-f) 

3 2
t 2 1 2 2 1

p 2 3 3 1 4 4 p 2

G q s (p q p q )s

ˆ ˆ2ω {q (p q ) q (q p ) 2ω q }s

= + −
+ − + − +

      (13-g) 

3 2
t 4 1 4 2 3

2
p 3 4 4 3 p 4 p 1 4 2 3

H q s (p q p q )s

ˆ ˆ ˆ+2ω (p q p q 2ω q )s 4ω (q q q q )

= + −

− + + −
      (13-h) 

t m m m m

4 3 2
1 4 p 1 4 2 3

2 2
p p 3 2 2 3 1 4 2 3

p 1 2 2 1 3 4 4 3 p 1 4

P det[s I A L C ]

ˆs (p p )s 4ω (q q q q )

ˆ ˆ{4ω 2ω (p p q q ) p p p p }s

ˆ ˆ2ω {p q p q p q p q 2ω (q q )}s

= ⋅ − +

= + + + −

+ + − + − + −

+ − + − + +

.        (14) 

Among the transfer functions in (12), most important 
factors are Ct/Pt and Ht/Pt, which explain the influence of each 
axis voltage to its estimated positive-sequence voltage. 
Therefore, this paper crucially considers these functions to set 
the observer gains. Initially, the roll-off rate of Ct/Pt and Ht/Pt 
can simply be increased by setting q1 and q4, the highest order 
coefficients in the numerators, to zero: 

1 4q q 0= = .           (15) 

The settings of (15) are intended to enhance the filtering 
performance to high-frequency distortions. With (15), Ct and 
Ht are simplified into 

2 2
t 3 2 p 1 2 p 2 3

ˆ ˆC p q s 2ω p q s 4ω q q= − + −          (16) 

2 2
t 2 3 p 4 3 p 2 3

ˆ ˆH p q s 2ω p q s 4ω q q= − − − .                       (17) 

To prevent non-minimum phase responses, all the 
coefficients must have the same sign in each of (16) and (17). 
This condition causes the roots of each equation to be placed 
in the left half plane (LHP) and is presented as 

1 3 3 3 4 2 2 2p / p 0, q / p 0, p / p 0, q / p 0< > > > .        (18) 

Meanwhile, the observer poles can be determined by using 
the concept of general second order system as follows: 

2 2 2 2
set 1 n1 n1 2 n2 n2P (s 2ζ ω s ω )(s 2ζ ω s ω )= + + + +         (19) 

where ζx is damping ratio, and ωnx is natural frequency. 

After the damping ratios and the natural frequencies are 
determined, the observer gains are set by comparing the 
coefficients between (14) and (19). Considering that all the 
coefficients are positive in (19), the condition in (20) must be 
satisfied in the coefficient comparison after (15) is applied: 

1 4 2 3p p 0, q q 0+ > < .          (20) 

Next design point is to set the observer gains so that the 
observer structure is symmetric. This can contribute to the 
simple implementation of the observer because similar gains 
can be repeated. The symmetric structure can be achieved with 
(21) when the conditions of (15), (18), and (20) are assumed: 

1 4 2 3 2 3p p , p p , q q= = − = − .                        (21) 

By the settings of (15) and (21), the equations of (13) and 
(14) are simplified into (22) and (23), respectively: 

3 2 2 2
t t 1 p 2 2 1 2

2 2
p 1 2 p 2

ˆA F p s {2ω (q p ) p p }s

ˆ ˆ4ω p q s 4ω q

= = + − + +

+ +
     (22-a) 

3 2 2
t t 2 p 1 p 2

ˆ ˆB E (p s 2ω p s 4ω q s)= − = − + +       (22-b) 

2 2 2
t t 2 2 p 1 2 p 2

ˆ ˆC H p q s +2ω p q s 4ω q= = +       (22-c) 

3 2
t t 2 1 2 p 2 2 2 p

ˆ ˆD G {q s p q s 2ω q (q p 2ω )s}= − = − + + − +     (22-d) 

4 3 2 2 2 2
t 1 p p 2 2 1 2

2 2
p 1 2 p 2

ˆ ˆP s 2p s {4ω 4ω (q p ) p p }s

ˆ ˆ4ω p q s 4ω q

= + + + − + +

+ +
.       (23) 

The observer gains in (23) can then be specified with 
respect to predetermined damping ratios and natural 
frequencies in (19) by the coefficient comparison. Because 
harmonic distortions commonly occur at multiples of 
fundamental frequency, it would be convenient to set the 
natural frequency to be proportional to the grid frequency: 

n1 1 p n2 2 p
ˆ ˆω k ω , ω k ω= =           (24) 

where pω̂ is estimated fundamental frequency. It is noticeable 

that pω̂  has already been used for the observer design since 

(7). 

With (21) and (24), the coefficient comparison between 
(19) and (23) results in 

1 4 1 1 2 2 p
ˆp p (ζ k ζ k )ω= = +           (25) 

2 2 2 2 2 2
p p 2 2 1 2 1 2 1 2 1 2 p

ˆ ˆ ˆ4ω 4ω (q p ) p p (k k 4ζ ζ k k )ω+ − + + = + +        (26) 

3
p 1 2 1 2 1 2 2 1 p

ˆ ˆ4ω p q 2k k (ζ k ζ k )ω= +          (27) 

2 2 2 2 4
p 2 1 2 p

ˆ ˆ4ω q k k ω= .           (28) 

If p1 in (25) is inserted into (27), q2 is uniquely determined. 
This resultant q2 must then satisfy (28). Equation (28) is 
rearranged into (29) by the insertion of the resultant q2: 

2

1 2 2 1

1 1 2 2

ζ k ζ k
1

ζ k ζ k

 + = + 
.           (29) 

Because each value in (29) has been assumed to be 
positive, (29) is further simplified into 

2 1 1 2(ζ ζ )(k k ) 0− − = .          (30) 
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Figure 2. Bode plots of Ct/Pt and Dt/Pt. 

 
Figure 3. Negative-sequence rejection to estimate the d-axis positive-

sequence voltage. 

When the observer poles are placed according to (19), the 
gain settings of (15) and (21) are allowed to use only if (30) is 
satisfied. At least, one of two factors in (30) must be zero. 
Namely, when (26) is considered, (31) must be satisfied if ζ1 
is equal to ζ2 while (32) does so if k1 is equal to k2: 

2 2 2
2 p 1 2 1ˆ(p /ω 2) (k k ) (1 ζ )− = − −          (31) 

2 2 2
2 p 1 1 2ˆ(p /ω 2) k (ζ ζ )− = − ⋅ − .                       (32) 

It is important to remind that every value is real number in 
(31) and (32). According to (31), k1 and k2 can be different 
under the constraint of (33) even if ζ1 and ζ2 are the same. 
However, ζ1 must be identical to ζ2 in (32) if k1 is equal to k2. 
Therefore, the setting for (31) is selected for more degree of 
freedom to place the observer poles. 

2
1 1(1 ζ ) 0   1 ζ 1− ≥ → − ≤ ≤ .          (33) 

In a general second order system, oscillatory responses 
would occur if damping ratio is smaller than unity. Therefore, 
in (33), the damping ratio could be set to unity. With this 
configuration, the observer gains in (21) are finally specified 
from the coefficient comparison as 

1 4 1 2 p

2 3 p

2 3 1 2 p

ˆp p (k k )ω

ˆp p 2ω

ˆq q k k ω / 2

 = = +


= − =
 = − =

.          (34) 

D. Pole placements of the Observer 
Considering (12) and (22), the estimated positive-sequence 

voltage is expressed with 

d+ t t d t t q

q+ t t d t t q

v̂ C /P v D /P v

v̂ D /P v C /P v

= ⋅ − ⋅
 = ⋅ + ⋅

.         (35) 

The substitution of (36) is applied to make the transfer 
functions similar to the general second order system: 

1 2k k, k kρ= = .           (36) 

The transfer functions in (35) are then derived as (37) and 
(38) after reducing common denominators: 

2
pt

2 2
t p p

ˆ(kω )C
ˆ ˆP s (1 )kω s (kω )

ρ
ρ ρ

=
+ + +

         (37) 

2
pt

2 2
t p p

ˆk ω sD 1
ˆ ˆP 2 s (1 )kω s (kω )

ρ
ρ ρ

= −
+ + +

.         (38) 

When the gain ρ is set to 1, (37) becomes a general second 
order system with unity damping ratio, and the gain k 
contributes to the adjustment of bandwidth. The frequency 
responses of (37) and (38) are depicted in Fig. 2 when the gain 
k varies. As shown in Fig. 2, the gain k can adjust the 
attenuating ratio of the harmonics incorporated in grid voltage. 

However, it is not explicit in (35) how the proposed 
observer can reject negative-sequence voltage. Considering 
(4), negative-sequence voltage can be expressed with (39) at 
two times the fundamental frequency in the synchronous 
reference frame: 

pd-

q- p

V sin(2ω t)v (t)

v (t) V cos(2ω t)

−

−

−  
=    −    

⎯⎯→L p
d- q-

2ω
v (s) v (s)

s
= .       (39) 

If pω̂ , the estimated frequency, is assumed to be accurate, 

(35) can be rearranged into (40) in terms of the negative-
sequence voltage of (39): 

2 22
p

d+ d-
p p

q+

ˆs 4ωk
v̂ (s) v (s)

ˆ ˆ4 (s kω )(s kω )

v̂ (s) 0

ρ
ρ

 +
= ⋅

+ +
 =

.        (40) 

As explicitly shown in (40), negative-sequence voltage 
cannot be reflected in the estimation of the q-axis positive-
sequence voltage if the observer implementation is ideal. This 
sort of rejection can also be confirmed in the d-axis estimation 
when considering the d-axis transfer function. Its Bode plot is 
depicted in Fig. 3 when the gains ρ and k are 1 and 1.5, 
respectively. As shown in Fig. 3, the d-axis transfer function 
in (40) serves as a notch filter. The rejection-band in Fig. 3 is 
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Figure 4. Entire PLL structure. 

 
Figure 5. Block diagram of the proposed observer. 

determined by the numerator of the transfer function. Namely, 
if s is substituted with j·2 pω̂  in (40), the band-rejection is 

easily proved. Therefore, for the rejection of negative-
sequence voltage, the accuracy of pω̂  to the actual counterpart 

is crucial rather than the gains ρ and k. 

III. PLL BASED ON THE OBSERVER 

The observer proposed in section II is attached to SRF-
PLL. By virtue of this construction, filtering harmonics can be 
readily achieved with less effort in the view point of PLL. 
This allows PLL to increase its bandwidth, which contributes 
to the higher phase-angle tracking dynamics. The entire PLL 
structure is shown in Fig. 4. Henceforth, this PLL structure is 
referred to as Synchronous Observer-Aided Preprocessing 
phase locked loop (SOAP-PLL). 

The estimated frequency in PLL must be fed back to the 
observer because the state equation in (8) is fundamentally 
based on this value, which is also used to set the observer 
gains according to (34). Usually, ωe2 in Fig. 4 has been used as 
estimated frequency. However, ωe2 may be sensitive to 
distortions because kpp, the proportional gain, directly delivers 
scaled angle errors to it. To refine this drawback, ωe1 in Fig. 4 
is used for the observer. The effectiveness of this modification 
can be discussed with following equations. When (41) is 
assumed, (42) can be derived from Fig. 4: 

d d p p
ˆ ˆθ θ θ θ≈ = −            (41) 

pp ip
p p2

pp ip

k s k
θ̂ θ

s k s k

+
=

+ +
          (42) 

where kpp and kip are proportional and integral (PI) gains for 
PLL. 

From Fig. 4 with (41), ωe1 is derived as 

ip ip
e1 d p p

k kˆ ˆω θ (θ θ )
s s

= ≈ − .          (43) 

If pθ̂  in (42) is inserted into (43), it can be rearranged into 

ip ip
e1 p p2 2

pp ip pp ip

k s k
ω θ ω

s k s k s k s k
≈ =

+ + + +
.        (44) 

That is, ωe1 is a low-pass filtered value of actual frequency. 
By using this frequency as pω̂ , the observer performance can 

be less sensitive to distortions. In addition, because the 
transfer function in (44) takes the form of general second 
order system, the PI gains can be set according to the setting 
rules of the second order system: 

2
pp pll npll ip npllk 2ζ ω , k ω= =           (45) 

where ζpll and ωnpll are respectively damping ratio and natural 
frequency of PLL. 

The gain settings of the observer and PLL have to come 
together. In this paper, all the gains are set so that the 
bandwidth of (37) is larger enough than that of (42). That is, if 
the dominant pole of observer is not large enough to that of 
PLL, the dynamics intended in (42) would be disturbed. 

Meanwhile, based on the equation obtained from dividing 
both sides of (10) by ‘s,’ the proposed observer can be 
specifically implemented as shown in Fig. 5. In the process of 

obtaining Fig. 5, the observer gains have been set according to 
(15), (34), and (36). Even though the derivation and 
description of the observer gains seem to be rather 
complicated, the practical implementation of the proposed 
observer is simple enough as shown in Fig. 5. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Evaluation of SOAP-PLL 
The performance of SOAP-PLL can be discussed in two 

aspects, the tracking error on grid parameters and the 
mitigating ability against distortions. Each performance has 
been examined under grid faults, where the grid voltages were 
contaminated by harmonics and unbalances, and the 
fundamental frequency was changed. 

In particular, the effectiveness of SOAP-PLL is discussed 
with the comparison to a conventional method, dual second 
order generalized integrator frequency locked loop (DSOGI-
FLL). This DSOGI-FLL has been selected because its 
implementation is relatively simple, and essential gain settings 
have been explicitly known [5]. 

B. Simulation Results 
The fault conditions for simulation tests have been quoted 

from the literature [10]. When the voltage amplitude at ideal 
grid is selected as the base voltage, the phasor of the normal 
voltage is denoted as 1∠0°. Based on this concept, the fault 
conditions are given as follows: 

1 1V 0.5 30 , V 0.25 110+ −= ∠ − ° = ∠ °           (46) 

5 7 11V 0.2 0 ,V 0.2 0 ,V 0.2 0− + −= ∠ ° = ∠ ° = ∠ °          (47) 

fault norf f 5Hz− = −             (48) 

where the subscript number of a voltage represents harmonic 
order, and normal condition is indicated by the subscript ‘nor’. 

When the normal grid is assumed to be 220Vrms-60Hz, and 
all the conditions in (46), (47), and (48) are applied after fault, 
fault waveforms can be depicted as shown in Fig. 6. 
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Figure 6. Grid fault under conditions of (46), (47), and (48). 

 
Figure 7. Simulation results under unbalance fault of (46) with analog 

implemenations. 

 
Figure 8. Simulation results under fault conditions of (46), (47), and (48) 

with digital implementations. 

 
Figure 9. Second order generalized integrator. 

Initially, the gains of DSOGI-FLL were set according to 
the earlier work [5]. For the fair comparison in performances, 
the gains of SOAP-PLL had to be set such that its dynamics 
was similar to that of DSOGI-FLL under the unbalance fault 
of (46). The specific values of those gains were 

pll npll1, k 1.7, ζ 1, ω 2 20ρ π= = = = ⋅ .                       (49) 

The gains of ρ and k are directly inserted into the observer 
of Fig. 5, and the gains of ζpll and ωnpll are reflected in the PLL 
of Fig. 4 via the PI gains in (45). With these specific values, 
SOAP-PLL has presented the same settling time under the 
condition of (46) only, as shown in Fig. 7. 

Due to the step variations in (46), the estimation errors of 
phase angle and frequency present oscillations for a while 
after the fault, as captured in Fig. 7. However, after the 
oscillations disappear, both methods shows perfect grid 
synchronizations as if there are no unbalance distortions. This 
result confirms that the unbalance rejection of SOAP-PLL is 
comparable with that of DSOGI-FLL. 

The performance of SOAP-PLL was different to that of 
DSOGI-FLL when each method was implemented in discrete 
time domain, or the harmonics in (47) were included in fault 
conditions. In the digital implementation, every integrator in 
both methods was implemented with the backward Euler 
method, which is the simplest method for digitization [11], 
[12]. With this digital implementation, each method for grid 
synchronization was tested under the fault conditions of (46), 
(47), and (48). The result is presented in Fig. 8. 

As shown in Fig. 8, SOAP-PLL obviously outperforms 
DSOGI-FLL in harmonic filtering. This is because SOAP-
PLL consists of two filtering stages, the observer and PLL. 
Even though the filtering performance of DSOGI-FLL can be 
further improved through the extension to multiple SOGI-FLL 
(MSOGI-FLL) [10], this extension must pay with the 
increment of source codes for implementation. In addition, the 
frequency of DSOGI-FLL presents the average error of 0.79 
Hz mainly due to harmonics. 

The other conspicuous feature is that DSOGI-FLL shows 
the steady-state error of 2.7 ° in estimating phase angle. To 
explain this phenomenon, one of dual SOGI is shown in Fig. 9. 
To estimate positive-sequence voltage, the followings are 
important in Fig. 9: 

p α
2 2

p p α

ˆkω s v̂
D(s)

ˆ ˆs kω s ω v
= =

+ +
        (50-a) 

2
p α

2 2
p p α

ˆkω v̂
Q(s)

ˆ ˆs kω s ω v

q= =
+ +

        (50-b) 

where the subscript ‘α’ refers to d-axis in the stationary 
reference frame. Q(s) particularly generates the quadrature 

signal of input while both D(s) and Q(s) serve filtering 
harmonics. 

When a system is transformed from the s-domain to the z-
domain, its property can be distorted. Moreover, the 
computational delay of z-1, which is indicated by dashed 
circles in Figs. 5 and 9, may be included for feedback. To 
specify this distortion, the following concept is introduced in 
this paper, which is called as z-transformation distortion 
(ZTD): 

sωΤ
z

H
s

H (e )
ZTD (ω

H ( ω)

j

j
) =            (51) 

where ‘H’ symbolizes the system itself of interest, Hs refers to 
the original system in the s-domain, and Hz represents the 
transformed system in the z-domain. In addition, ω is the 
frequency of concern, and Ts is the sampling frequency for 
digital implementation. 
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Figure 10. Bode plots of ZTDs in SOAP-PLL and DSOGI-FLL with 

10kHz sampling. 

 
Figure 11. Grid fault for experiment. 

 
Figure 12. Frequency estimations in experiment: time [10ms/div]. 

The meaning of ZTD is the distorted degree of the z-
domain system from the s-domain system. The Bode plot of 
ZTD corresponds to the differences between the Bode plots of 
each system: 

sωΤ
10 H 10 z 10 s20log | ZTD (ω) | 20log | H (e ) | 20log | H ( ω) |j j= −    (52) 

sωΤ
H z sZTD (ω H (e ) H ( ω)j j∠ ) = ∠ − ∠ .         (53) 

The Bode plots of ZTDs in SOAP-PLL and DSOGI-FLL 
are depicted in Fig. 10 when the sampling frequency is set at 
10 kHz. In the Bode plot of ZTD, magnitude and phase must 
be respectively 0 dB and 0 °, which corresponds to unity, 
when the z-transformation is ideal. As shown in Fig. 10, the 
ZTDs deviate from the unity when the frequency of concern 
approaches to the Nyquist frequency. 

From Fig. 10, it can be explained why the steady-state 
error arises in DSOGI-FLL, and not in SOAP-PLL. To 
estimate phase angle, positive-sequence voltage must be 
estimated at the fundamental frequency in DSOGI-FLL. 
However, the ZTDs of D(s) and Q(s) exhibit the phase 
distortions of 2.2 and 3.2 degrees at that frequency. For ac 
components, these nonzero phases correspond to parallel 
displacements in time-domain. These displacements cause the 
steady-state error in DSOGI-FLL, and can be intensified at 
smaller sampling frequency as shown in Fig. 10 (denoted by 
@5kHz). In contrast, SOAP-PLL estimates positive-sequence 
voltage at dc band, where its ZTDs approach to the unity. 
Unlike SOAP-PLL, accurate digitizing strategy seems to be 
required for DSOGI-FLL rather than the simple backward 
Euler method [11]-[13]. 

In addition, the condition of (48) has also been included in 
the fault test of Fig. 8 to examine the frequency-adaptive 
property of SOAP-PLL. Because distortions are nearly not 
observed at two times the fundamental frequency in Fig. 8, it 

can be recognized that SOAP-PLL successfully rejects 
negative-sequence voltage even after the frequency variation. 

C. Experimental Results 
To demonstrate the feasibility of SOAP-PLL, a grid fault 

was emulated using ac source, MX30. All algorithms were 
implemented in a digital signal processor (DSP), 
TMS320F28335, and grid voltages were sampled through 
voltage sensors per 100 μs. All the gains for SOAP-PLL were 
set according to (49). 

The most frequent fault is the single phase-to-ground fault 
[14], which is commonly recognized as phase-to-phase fault 
by grid-connected converters due to transformers [8]. The 
phase-to-phase fault between b- and c-phases has been 
considered: 

a

b sag

c sag

V 1

V 1/ 2 V 3 / 2

V 1 / 2 V 3 / 2

j

j

 =
 = − −


= − +

           (54) 

where Vsag is a complex number indicating the degree of 
voltage sag. In addition, all magnitudes are in per unit. 

The magnitude of Vsag is determined according to the 
phase of Vsag [8]. For experiment, Vsag was set to 0.38∠ െ40	°. The magnitudes of harmonics at 5th, 7th, and 11th orders 
were set to about 0.08 per unit, and the frequency variation in 
(48) was included as well. The grid voltage around the fault 
occurrence has then been recognized in the DSP board as 
shown in Fig. 11. 

Initially, the c-phase voltage, whose negative peak was the 
starting point of the fault, was selected as the reference to 
capture several waveforms due to the limited channels of 
oscilloscope. It was assumed that the ac source could generate 
almost time-invariant faults by the same settings. 

Under the fault situation, SOAP-PLL has presented the 
least harmonics in the frequency estimation shown in Fig. 12. 
The effect of the proposed observer can be more obvious via 
the comparison with SRF-PLL, where only the observer part 
has been eliminated from SOAP-PLL. In particular, negative-
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Figure 13. Angle estimations in experiment: time [10ms/div]. 

sequence distortions were evidently rejected by SOAP-PLL. 
After the estimations settled down, the RMS of frequency 
ripple was 0.1 Hz for SOAP-PLL, 1.52 Hz for SRF-PLL, and 
0.45 Hz for DSOGI-FLL. Furthermore, the frequency of 
DSOGI-FLL presented the average deviation of 0.102 Hz 
when compared to SOAP-PLL. 

Because the information of actual phase angle was not 
permitted to access, angle errors were calculated with respect 
to the phase angle of SOAP-PLL when considering the 
simulation result. After the estimations settled down, the phase 
angle of DSOGI-FLL deviated from that of SOAP-PLL by 
2.4 ° as shown in Fig. 13. 

V. CONCLUSION 

In this paper, an observer has been proposed to clearly 
extract positive-sequence voltage from the polluted grid 
voltage. This extraction is intended to reinforce the function of 
PLL by using the observer as a preprocessor. The state 
equation has been newly derived on grid voltage to construct 
the observer, and the gain settings of the observer have been 
obviously suggested when considering the mitigation of grid 
distortions and the combination with PLL. 

In functional aspect, the proposed PLL method was 
specifically scrutinized in terms of filtering harmonics and 
rejecting unbalances under polluted grid conditions when the 
dynamics to track the phase angle was adjusted to be similar 
to a conventional method. In particular, the performances were 
discussed in digitally implemented structures under the 
consideration of practical implementation. In result, the 
effectiveness of the proposed method has been confirmed by 
simulation and experimental results. Despite simple 
implementation, the proposed method excelled in mitigating 
distortions of the estimated frequency and phase angle without 
steady-state errors. 
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