3상 4레그 전압원 인버터(Three-Phase Four-Legged Voltage Source Inverter)의 공간벡터 전압변조 방식에 대한 연구

> 김 장 환, 설 승 기 서울대학교

A Study about Space Vector PWM strategy For Three-Phase Four-Legged Voltage Source Inverter

Jang-Hwan Kim, Seung-Ki Sul Seoul National University

Abstract - 3상 4레그(leg) VSI(Voltage Source Inverter)는 독립된 3개의 출력전압을 합성할 수 있다. 따라서 전압 합성에 있어서 3개의 자유도를 갖는다. 본 논문에서는 3상 4레그 VSI를 위한 PWM방법에 대해서 설명한다. 3상 4레그 VSI를 위한 기존의 PWM기술은 3-D SVPWM으로 그 구현 방법에 있어서 많은 양의 계 산과 테이블을 필요로 하였다. 하지만, 본 논문에서 제안 한 방법은 3상 3레그 VSI경우에 적용되었던 옵셋 (offset) 전압의 개념을 사용한다. 또한 단일 반송파를 이 용하여 폴(Pole)전압과 비교함으로써 PWM을 구현하기 때문에 그 적용이 매우 간단하다. 본 논문에서는 기존의 3-D SVPWM과 제안한 방법이 해석적으로 동일한 방법 임을 증명하였으며, 3상 4레그 VSI에서 합성가능한 3자 유도의 전압범위를 계산하였다. 마지막으로 이를 실험을 통하여 검증하였다.

1. 서 론

3상 4선식 시스템의 경우 영상분 전압과 전류가 발생할 수 있다. 이 영상분 전압이나 전류를 제어하기 위해 기 존의 많은 연구들에서는 하프브릿지(Half-bridge)나 풀 브릿지(Full-bridge) 단상인버터 세개로 3상 인버터를 구 성하여 각 상전압을 독립적으로 합성하는 인버터 구조를 사용하였다[1,2]. 또한 각 상전압을 독립적으로 합성할 수 있는 인버터 구조로서 3상 4레그(Leg)인버터가 제안 공간벡터 되었으며 이를 위한 펄스폭 변조방식 (SVPWM)이 연구되었다[4,5]. 그림 1은 3상 4레그 VSI 의 회로 구성을 보여주고 있다. "f"레그의 추가로 전압합 성능력에 있어서 3상 3레그 VSI가 갖는 2자유도에 영상 분을 제어할 수 있는 자유도를 추가로 갖게된다. 3상 3 레그 인버터의 PWM방법으로 Space Vector PWM (SVPWM)방식이 널리 알려져 있으며, 옵셋전압을 이용 한 SVPWM의 구현방법은 그 적용을 더욱 용이하게 하 였다[3]. 3상 4레그 인버터의 SVPWM방법은 그 구현이 복잡하며, 24개의 매트릭스 테이블을 필요로 한다[5]. 본 논문에서는 3상 3레그 VSI의 옵셋전압을 이용한 PWM 방법을 확장하여 3상 4레그 VSI의 경우에 적용하고자 하며, 3상 4레그 VSI에서 합성가능한 3자유도의 전압을

그림 1 3상 4레그 VSI 구성도 수치적으로 해석하고자 한다.

2. 본 론

2.1 기존의 3상 4레그 VSI의 PWM 방법[5]

3상 4레그 VSI는 8개의 스위치 상태의 조합에 따라 16개의 전압벡터를 합성할 수 있다. 각 레그의 스위칭 상태에 따른 출력 전압은 표 1과 같이 나타낼 수 있다. 표에서 'p'는 각 레그의 위쪽 스위치가 ON임을 'n'은 OFF임을 나타내며, 각 레그의 스위치들은 서로 상보적 으로 동작한다. 이 출력 전압을 dqo전압 좌표공간에 나 타내면 그림 2와 같다. 3상 3레그 인버터의 SVPWM방 식과 유사하게 이웃한 3개의 유효전압벡터(v_1, v_2, v_3)를 선택하고, 수식(1)과 같이 각각의 유효전압벡터의 듀티 비(duty ratio)를 계산할 수 있다. 수식(1)에서 d_1, d_2, d_3 는 선택된 3개 유효벡터의 인가시간을 각각 t_1, t_2, t_3 라고 할때, 각 인가시간을 전체 제어주기로 나눈 값이다. 즉 $d_1=t_1/T_s, d_2=t_3/T_s, d_3=t_3/T_s$ 이다. 영전압벡터(V_0)가 인 가되는 시간을 때 제어주기(T_s)의 양쪽 끝에 대칭적으로 인가하게 함으로써, 3-D SVPWM을 구현할 수 있다.

$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \frac{1}{V_{dc}} \mathbf{Mc} \begin{bmatrix} V_d \\ V_q \\ V_s^* \\ V_s^* \end{bmatrix}$$

하지만, 이 방식은 이웃한 유효전압벡터 3개를 찾기 위 한 과정이 복잡하고, 전체 dqo 전압벡터공간을 24개의 다면체로 구분하여, 각의 다면체마다 3-D SVPWM구현 을 위한 서로 다른 (3x3)Mc 메트릭스가 존재한다. (1) 수식 연산을 위해서 이를 테이블로 처리하여야 한다.

2.2 제안된 3상 4레그 VSI의 PWM방법

V_{fn}을 3상 4레그 VSI에서 옵셋전압이라고 정의하자. 세 개의 출력전압지령치가 V_{af}^{*}, V_{bf}^{*}, V_{cf}^{*}라고 가정하면 각 레 그의 폴전압은 옵셋전압(V_{fn})을 이용하여 다음과 같이 계 산할 수 있다

표 1 스위칭 상태에 따른 dqo전압 (a,b,c,f)레그의 스위칭 상태

	pppp	nnnp	pnnp	ppnp	npnp	nppp	nnpp	pnpp
V_d	0	0	$\frac{2}{3}V_{dc}$	$\frac{1}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$-\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$\frac{1}{3}V_{dc}$
V_q	0	0	0	$\frac{1}{\sqrt{3}}V_{dc}$	$\frac{1}{\sqrt{3}}V_{dc}$	0	$-\frac{1}{\sqrt{3}}V_{dc}$	$-\frac{1}{\sqrt{3}}V_{dc}$
V_o	0	$-V_{dc}$	$-\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$-\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$-\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$
	pppn	nnnn	pnnn	ppnn	npnn	nppn	nnpn	pnpn
V _d	pppn 0	nnnn 0	$\frac{\text{pnnn}}{\frac{2}{3}\text{V}_{\text{dc}}}$	$\frac{1}{3}V_{dc}$	npnn $-\frac{1}{3}V_{dc}$	nppn $-\frac{2}{3}V_{dc}$	nnpn $-\frac{1}{3}V_{dc}$	pnpn $\frac{1}{3}V_{dc}$
	pppn 0 0	nnnn 0 0	$\frac{pnnn}{\frac{2}{3}V_{dc}}$	$\frac{1}{3}V_{dc}$ $\frac{1}{\sqrt{3}}V_{dc}$	npnn $-\frac{1}{3}V_{dc}$ $\frac{1}{\sqrt{3}}V_{dc}$	$\frac{\text{nppn}}{-\frac{2}{3}V_{\text{dc}}}$	$\frac{\text{nnpn}}{-\frac{1}{3}V_{\text{dc}}}$ $-\frac{1}{\sqrt{3}}V_{\text{dc}}$	pnpn $\frac{1}{3}V_{dc}$ $-\frac{1}{\sqrt{3}}V_{dc}$

그림 2 각 레그의 스위칭상태에 따른 dqo좌표상의 출력전압벡터

$$V_{an} = V_{af}^{*} + V_{fn} V_{bn} = V_{bf}^{*} + V_{fn} V_{cn} = V_{cf}^{*} + V_{fn}$$
(2)

그런데(2)는 (3,4)와 같은 제한조건을 갖는다.

$$-\frac{V_{dc}}{2} \le V_{an}, V_{bn}, V_{cn}, V_{fn} \le \frac{V_{dc}}{2}$$
(3)

$$-\frac{V_{dc}}{2} - V_{\min} \le V_{fn} \le \frac{V_{dc}}{2} - V_{\max}$$
(4)

세 개의 출력 전압지령치 $V_{af}^{*}, V_{bf}^{*}, V_{cf}^{*}$ 가 주어졌을 때, 제한조건 (3,4)을 만족시키는 폴전압 V_{an}, V_{bn}, V_{cn} 그리고 옵셋전압 V_{fn} 의 조합은 무수히 많이 존재할 수 있다.

2.2.1 3D-SVPWM를 위한 V_{fn} 결정

영전압벡터를 제어주기의 시작과 끝에 대칭적으로 배치 하기 위해서는 옵셋전압은 다음과 같이 결정해야 한다.

$$V_{fn} = \begin{pmatrix} -\frac{V_{\max}}{2} & (when \ V_{\min} > 0) \\ -\frac{V_{\min}}{2} & (when \ V_{\max} < 0) \\ -\frac{V_{\max} + V_{\min}}{2} & (otherwise) \end{pmatrix}$$

여기서, Vmax, Vmin은 각각 Vat, Vbt, Vct의 최대값과 최소 값을 의미한다. 이와같이 옵셋전압을 결정하고 각 레그 의 폴전압을 (2)의 수식을 이용해 얻을 수 있다. 각 레그 의 스위칭은 각 폴전압과 옵셋전압을 삼각파(반송파)와 비교하여 결정한다. 제안된 전체 SVPWM 방법은 그림 3과 같이 나타낼 수 있다.

2.2.2 합성 전압 용량계산

3개의 일정 주파수 출력전압을 다음과 같이 표시할 수 있다고 가정하자(단, *V_a*+ *V_b*+ *V_c* = 0). 즉 *V_a*, *V_b*, *V_c*는 영 상분전압(*V_o*)을 제외한 순수한 dq전압성분이다.

$$V_{af} = V_a + V_o$$
$$V_{bf} = V_b + V_o$$
$$V_{cf} = V_c + V_o$$

dq전압(V_{dq})과 영상분 전압(V_o)에 대해서 각각 합성할 수 있는 전압범위를 생각해 보자. 각 출력전압이 순수하 게 영상분 전압만 존재한다고 하면(V_a=V_b=V_c=0), 순시적 으로 -V_{dc}≤≤V_o≤V_{dc} 까지 합성할 수 있다. 하지만, 일반 적인 3상 전력시스템의 경우, dq전압이 영상분 전압에 비해 합성해야하는 양이 크므로, dq전압용량을 최대로 사용하면서, 합성할 수 있는 영상분 전압의 크기를 찾는 것이 논리적이다.

dq전압의 절대치의 최대값이 A로 주어진다면, 이때 옵 셋전압의 크기는 A/4로 제한되어지고, 이때 합성가능한 영상분 전압은 $V_{dc}/2 - A/4$ 가 된다. 예를 들어 DC link 전압이 V_{dc} 로 제한된 시스템의 경우, 합성가능한 dq전압 절대치의 최대값은 $V_{dc}/\sqrt{3}$ 이다. 이때, 옵셋전압의 크기는 최대 $V_{dc}/4\sqrt{3}$ 로 주어지므로, 합성가능한 영상분 전압은 $V_{dc}/2 - V_{dc}/4\sqrt{3}$ 으로 제한된다. 결국 한상의 최대값은 $\frac{V_{dc}}{\sqrt{3}} + \frac{V_{dc}}{2} - \frac{V_{dc}}{4\sqrt{3}} = \frac{V_{dc}}{2} + \frac{\sqrt{3}V_{dc}}{4} = 0.933V_{dc}$ 이 된다.

2.2.3 실험결과

제안한 SVPWM방법을 이용하여 실험을 통해 그 실효 성을 확인하였다. 그림4는 실험장치의 구성을 보여주고 있으며, 표 2 는 실험에 사용된 파라메터의 값을 보여주 고 있다. 실험에서 각 상출력전압은 DVSC (Driect Voltage Sensing Circuit)를 이용하여 측정하였다[6].

표 2 실험 파라메터

부하 저항(R)	40Ω
부하 인덕턴스(L)	50mH
DC-link 전압	300V
스위칭 주파수	5kHz

그림5의 실험은 다음 전압지령치 조건에서 실험한 파형이다.

 $V_{af}^{*} = V_{dc} / \sqrt{3} \cos(120\pi t)$ $V_{bf}^{*} = V_{dc} / \sqrt{3} \cos(120\pi t - 2\pi/3)$

 $V_{ct}^{*} = V_{dd} / \sqrt{3} \cos(120\pi t + 2\pi/3)$

즉, 영상분 전압성분은 없고, 제한된 DC-link상황에서 최대의 dq전압을 합성하도록 전압 지령치를 주었을 때를 조건으로 한 것이다. 제안한 방법으로 옵셋전압을 결정하였고, 이는 그림5a

그림 4 실험세트 구성도

의 네번째 그림에 나타나 있다. 실제 출력 전압은 지령치를 잘 따라가고 있으며, 중성점 전류는 0으로 유지되고 있음을 확인 할 수 있다. 그림6의 실험은 다음 전압지령치 조건에서 실험한 파형이다.

$$\begin{split} &V_{af}^{*} = V_{dc} / \sqrt{3} \cos(120\pi t) + (V_{dc/2} - V_{dc/} 4\sqrt{3}) \cos(120\pi t) \\ &V_{bf}^{*} = V_{dc} / \sqrt{3} \cos(120\pi t - 2\pi/3) + (V_{dc/2} - V_{dc/} 4\sqrt{3}) \cos(120\pi t) \\ &V_{cf}^{*} = V_{dc} / \sqrt{3} \cos(120\pi t + 2\pi/3) + (V_{dc/2} - V_{dc/} 4\sqrt{3}) \cos(120\pi t) \end{split}$$

즉, dq전압 조건은 그림5의 실험조건과 동일하지만, 영상분 전압성분이 첨가되어있는 경우이다. 영상분 전압은 a상과 동기 되어 있고, dq전압을 최대로 합성하면서, 영상분 전압을 최대 로한 값을 지령치로 하였다.

불평형상태임을 확인할 수 있다. 그림6b에서는 각 상의 전압은 불평형상태를 유지하며 지령값과 같이 합성되고 있음을 확인할 수 있다.

3. 결 론

본 논문에서는 3상 4레그 인버터의 SVPWM방법을 3상 3레그 인버터에서처럼 옵셋전압의 개념으로 설명할 수 있음을 보였다. 각 V_{dq} 와 V₀의 전압합성 범위를 수치적 으로 해석하였으며, 제안된 방법이 기존의 3-D SVPWM과 동일한 방법임을 보였다. 마지막으로 이를 실험을 통해 검증하였다.

부록

이 부록에서는 [5]의 방법과 제안한 방법이 동일함을 해석적으로 증명하고자 한다. 지면관계상 증명의 논리전 개만 밝히고자 한다. [5]에서 주어진 방법대로 24개의 메 트릭스중 하나에 대해서만 계산해 보자. 전압지령치가 V_d^{*},V_q^{*},V_o^{*}로 주어졌다고 가정하자. [5]에서 프리즘1, 사 면체3의 영역에서 메트릭스 *Mc*를 A.1에 넣어 계산하면 듀티비를 계산할 수 있다.

$\begin{bmatrix} d_1 \end{bmatrix}$	1	3/2	$-\sqrt{3}/2$	0 ≬ A	[. [Y _d]
$d_2 =$	$\frac{1}{V}$	0	$\sqrt{3}$	0	V_q^*
$\begin{bmatrix} d_3 \end{bmatrix}$		-1/2	-√3/2	1]'	$\begin{bmatrix} V_o^{\uparrow} \end{bmatrix}$

 $dz = 1 - d_1 - d_2 - d_3$

여기서, 제안된 방법으로, V_d,V_q,V_o전압과 출력전압 V_{af},V_{bf},V_{cf}는 다음 변환 메트릭스로 변환할 수 있다.

Γ	V_d	[1	-1/2	- <u>1/</u> 2 ≬A	1.2) _{af}
	$V_q = \frac{2}{3}$	0	√3/2	$-\sqrt{3/2}$	V_{bl}^*
L	V_o	l 1/2	1/2	1/2]	$\begin{bmatrix} V_{cf}^{*} \end{bmatrix}$

프리즘1, 사면체3영역에서, 제안된 옵셋계산방법에 의해 V_{fn} = -V_{af}/2가 되고, 각 폴전압은 다음과 같이 계산할 수 있다.

V_{an}=V_{af}^{*}+V_{fn}, V_{bn}=V_{bf}^{*}+V_{fn}, V_{cn}=V_{cf}^{*}+V_{fn} (A.3) 이때, 삼각파와 비교해서 각 레그의 위쪽스위치의 ON시 간을 구해보면 다음과 같이 주어진다.

$$T_{a}=T_{s}/2 + T_{s}*V_{an}/V_{dc}$$

$$T_{b}=T_{s}/2 + T_{s}*V_{bn}/V_{dc}$$

$$T_{c}=T_{s}/2 + T_{s}*V_{cn}/V_{dc}$$

$$T_{f}=T_{s}/2 + T_{s}*V_{fn}/V_{dc}$$
(A.4)

앞서 [5]의 방법으로 계산한 d₁,d₂,d₃,d_z에 T_s를 곱해서 제어주기내에 (A.5) 같이 배치하여, T_a,T_b,T_c,T_f를 계산 해보면, A.4의 결과와 동일함을 확인할 수 있다.

$$T_{g} = T_{s}(D_{z}/2 + D_{3} + D_{2} + D_{1})$$

$$T_{b} = T_{s}(D_{z}/2 + D_{3} + D_{2})$$

$$T_{c} = T_{s}(D_{z}/2 + D_{3})$$

$$T_{c} = T_{s}(D_{z}/2)$$
(A.5)

[참 고 문 헌]

- [1] C.A.Quinn and Ned Mohan, Active Filtering of Harmoni c Currents in Three-Phase, Four-Wire Systems with Thr ee-Phase and Single-Phase Nonlinear Loads, in *Proc. IE EE-APEC93 conf.*, pp. 841-846, 1993.
- [2] Sang-Jun Lee and Seung-Ki Sul, A New Series Voltag e Compensator Scheme for the Unbalanced Utility Conditi ons, in *Conf. Rec., EPE2001.*, 2001.
- [3] Dae-Woong Chung, Joohn-Sheok Kim and Seung-Ki Su l, Unified Voltage Modulation Technique for Real-Time Three-Phase Power Conversion, *IEEE Trans. Ind. Appli cat.*, Vol.34, pp. 374-380, No.2, March/April 1998.
- [4] M.J. Ryan, R.W. De Donker, and R.D. Lorenz, "Decouple d Control of a Four-Leg Inverter via a New 4x4 Transfo rmation Matrix", *IEEE Trans. Power Electron.*, Vol.16, p p.694-701, Sept., 2001.
- [5] R. Zhang, V.H. Prasad, D. Boroyevich, "Three-Dimension al Space Vector Modulation for Four-Leg Voltage-Source Converters" *IEEE Trans. Power Electron.* Vol.17, pp.314 -, 324, May, 2002.
- [6] Yo-Chan Son, Bon-Ho Bae and Seung-Ki Sul, "Sensorle ss Operation of Permanent Magnet Motor using Direct V oltage Sensing Circuit," in *Conf. Rec. IEEE IAS Annual Meeting*, pp.1674-1678, 2002.